Autumn Plumages from the Bering Sea Region, Alaska

Since the 1970s, many birders have enjoyed birding Alaska’s Bering Sea region during the spring and early summer, drawn there by the presence of many Alaska “specialties”, by a wonderful seabird spectacle, and by the regular occurrence of many Asian strays. The more protracted autumn season, by contrast, has received less attention.

Paul Lehman
P. O. Box 379, Cape May, New Jersey 08204
lehman.paul@verizon.net

The lusher vegetation of early autumn makes finding low-density migrant and vagrant passerines more difficult. Add the furtive nature of some of these species, and a certain level of birder frustration is possible. Fall coverage was spotty at best into the early 1990s: just a few fall trips to Attu and Shemya islands in the western Aleutians, and rare, brief visits to St. Paul Island in the Pribilofs and to Gambell on St. Lawrence Island. Despite the apparent drawbacks associated with fall birding there, in the early 1990s I initiated regular autumn tour leading and lengthier personal visits to Gambell between late August and early October. My visits (most lasting 30–45 days or longer) have continued on a regular basis through 2005, at which point I had stayed there for a total of 282 days in autumn. St. Paul Island finally received lengthy fall coverage spearheaded by Derek Lovitch in 2003 and continued by Gavin Bieber in 2004. Adak Island in the Aleutians received extensive coverage in autumn 2004 only. Shemya has been recently surveyed extensively in fall by researcher Michael Schwitters for
four years (and previously in the late 1970s by D. D. Gibson and Thede Tobish), but the island is otherwise off limits to almost all birders for security reasons.

The surveys at Gambell and St. Paul have shown the autumn period to be rich in numbers of regular “trans-Beringian” passerine migrants (e.g., Arctic Warbler, Bluethroat, Northern Wheatear, Gray-cheeked Thrush, Eastern Yellow Wagtail, and Red-throated Pipit). These individuals may cross the Bering Sea twice per year, in both spring and fall, with the largest numbers occurring in the northern (Bering Strait) region, e.g., at Gambell, where the crossing is the shortest and presumably the safest. It is interesting that the trans-Beringian migration involves species heading in exactly the opposite direction at the same time. During the autumn, eastbound Gray-cheeked Thrushes and Sandhill Cranes (both have breeding populations on Russia’s Chukotskiy Peninsula) cross paths with westbound Arctic Warblers, Bluethroats, Northern Wheatears, and Eastern Yellow Wagtails en route to Old World wintering grounds.

Gambell, St. Paul, and Adak also provide superb seawatching and good
A small population of Common Ringed Plovers (subspecies *tundrea*) nests on St. Lawrence Island, and several birds are noted at Gambell annually in late spring and early summer. For birders unable to visit Baffin Island (where subspecies *psammodroma* breeds), Gambell is the only reliable and readily accessible locale for this species in the ABA Area. The species is a strictly casual migrant in the Pribilofs, Aleutians, and northeastern North America south of arctic Canada, primarily as a fall vagrant. (Interestingly, there are more records of Semipalmated Plover in the western Aleutians than there are of Common Ringed.) Given the presumably sizeable North American breeding population of Common Ringed Plover and the propensity for European shorebirds to wander to our Atlantic seaboard, this species must be a more-regular vagrant to southern Canada and the Lower 48 States than the few existing records would indicate. Clearly, this low number has a lot to do with the difficulty in separating Common Ringed from Semipalmated. The best distinction between the two species is the call, which ideally should be heard on any presumed vagrant Common Ringed reported in the ABA Area. Detailed photo captions provide information on the identification and aging of the birds shown, as well as information on the status of these species in the Bering Sea region.

Acknowledgments

I thank Wings, Inc., for giving me the opportunity to lead tours at Gambell for many years. Helpful comments on an early draft of this article were provided by Matt Heindel, Derek Lovitch, Steve Mlodinow, Brad Schram, Michael Schwitters, Thede Tobish, and Chris Wood.

Literature Cited and Recommended Reading

Several species of shorebirds molt mostly or completely out of juvenal plumage before arriving in southern Canada and the Lower 48 States. A handful of Dunlins have been observed there in largely juvenal plumage, but most birds of that age retain little if any such feathering—perhaps a few wing coverts showing pale edges, or part of the blotchy, blackish lower breast/belly patch—when they arrive in September or early October. Dunlins breed at Gambell, and young birds in full or mostly juvenal plumage are readily observed in mid-to-late August. On the juvenile Dunlin pictured here (top), note the blotchy black markings on the underparts and a beautiful upperpart pattern not seen on the plain-gray basic-plumage birds commonly observed in the Lower 48. Rock Sandpipers (subspecies tschuktschorum) typically do not arrive on the wintering grounds between coastal southern British Columbia and northern California until October or later, and by that time the juveniles have molted into (almost) full basic plumage. (The same is true of Purple Sandpipers along the Atlantic Coast.) This juvenile Rock Sandpiper (middle) at Gambell—where the species is a common breeder—retains most of its juvenal plumage. It has, however, molted most of its head feathers into the dark gray feathering typical of basic plumage.

The regular breeding subspecies of Rock Sandpiper in the northern Bering Sea is tschuktschorum, which is also the subspecies typically found wintering along the Pacific Coast from southeastern Alaska to northern California. The nominate race, ptilocnemis, breeds only on the Pribilof Islands and winters almost solely in the Cook Inlet region of south-central Alaska. There is just one vagrant record involving the latter subspecies well south of the normal range: a bird at Ocean Shores, Washington, in 2000–2001 and again in 2001–2002. In this photograph, a typically dark-looking tschuktschorum (left) has been joined by a paler ptilocnemis (right), the latter probably representing the first record for the central and northern Bering Sea region. Note not only the Pribilof bird’s paler overall coloration, but also its larger size; larger and thicker-based bill; and brighter, paler, more-yellowish base to the bill (and legs, although hidden here). Both birds are juveniles that have largely molted into first-basic plumage, but which have retained juvenal wing coverts. Gambell, Alaska; 25 September 2005. © Paul Lehman.
Both Wandering and Gray-tailed Tattlers are regular fall migrants in small numbers on the offshore Bering Sea islands and Aleutians. In fact, they are more numerous at this season than in spring. Southbound adults begin to arrive in July and may be found into early September, whereas the first juveniles appear beginning in late August and continue into late September. Wandering Tattlers peak earlier in the season than Gray-tailed. The latter species has occurred casually or accidentally along the Pacific Coast south to California.

It is unusual to see juveniles of both species side by side. Compared to juvenile Wandering (rear), juvenile Gray-tailed (foreground) has paler gray upperparts, often tinged slightly with pale brown; has paler flanks (usually washed with more-limited and paler gray, rarely whitish); and shows more extensive white edgings, spotting, or notches to the scapulars, wing coverts, and tertials. (Note the limited pale edgings and spots on the juvenile Wandering, and that its tertials are plain gray.) Both species show a dark slate-gray loral line, but this line may stand out more readily in Gray-tailed because the remainder of its plumage is slightly paler than it is in Wandering. Vocal differences between the two species are important. The oft-mentioned differences in the length of the nasal groove may or may not be helpful, but hardly seem important if the much-easier-to-observe distinctions listed here have already been noted long before the nasal groove length could possibly be assessed! Gambell, Alaska; 4 September 2005. © Aaron Lang.

"Vega" Herring Gull (Larus argentatus vegae) is a taxon ranked as a full species by a number of European authorities but still considered a subspecies of Herring Gull by the AOU. It is an uncommon-to-common summer resident and migrant in the Bering Sea region. It breeds in good numbers on a number of islands, including St. Lawrence and St. Matthew. In late summer and fall, as many as 60 per day can be seen at Gambell and along the mainland coast at Nome. Juvenile "Vega" Gulls can be distinguished from juveniles of the typical North American subspecies (smithsonianus) by their bolder, darker-centered scapulars and tertials and by their slightly darker (blackish-brown) tail that contrasts more strongly with the rump and uppertail coverts, which are whiter—less heavily mottled—than in most smithsonianus. Vega Gull is highly variable in all ages, however. There is substantial variation in the amount of mottling in juveniles, and in the mantle color of adults (the latter causing confusion not only between paler-mantled vegae and smithsonianus, but also between darker-mantled Vega and Slaty-backed Gulls). Gambell, Alaska; 26 August 2004. © Brian L. Sullivan.

The Red-necked Stint is a rare-but-regular fall migrant in small numbers through the Bering Sea region during August and into the first few days of September. In contrast, Semipalmated Sandpiper is strictly casual at best there in late summer and early fall. Many birders are interested in telling the two species apart in juvnal plumage closer to home: vagrant Red-necks—though almost exclusively involving much-easier-to-identify adults in alternate plumage—occur annually in southern Canada and the Lower 48. Most such records are from along the Pacific and Atlantic seabords, but there are scattered interior records as well. Juvenile Red-necks, such as the bird shown here, differ from similarly aged Semipalmateds by having a more contrasting rufous mantle and scapulars compared with plain gray wing coverts and tertials (with dark, anchor-shaped shaft streaks), and by their tendency to show a somewhat unique gray-buff wash to the head and breast compared to the purer buff wash to the breast of Semipalmated (and Little Stint). Note, however, that some bright juvenile Semipalmateds show some rufous to the scapulars. Juvenile Red-necks often show thin, pale mantle "braces" that form a weak "V" pattern, a character shown by fewer Semipalmateds, but shown more boldly by juvenile Little Stints. The latter species also differs by having more solidly blackish-centered and rufous-edged wing-coverts and tertials and by showing more distinct dark spots on the sides of the upper breast rather than faint, dusky streaks typical of most juvenile Red-necks and Semipalmateds. Gambell, Alaska; late August 2001. © Julian Hough.
St. Paul Island in the Pribilofs is the most accessible location to see Red-legged Kittiwake, a common breeder there. Much larger numbers nest on nearby St. George Island. While almost all birders who visit “the Pribs” have seen adult Red-leggeds, relatively few have seen fledged juveniles and subadults. This photograph shows an adult and a one-year-old Red-legged Kittiwake (foreground) with an adult Black-legged Kittiwake (rear). Note the differences in bill shape between the two species. Also note Red-legged’s rounder head and larger eye, which impart a somewhat gentler, more dove-like appearance. The darker gray mantle of Red-legged vs. that of Black-legged can just barely be seen in this photograph. Typically, though, this difference is fairly obvious when the two species are found together. Unlike young Black-legged Kittiwakes, young Red-leggeds have entirely white tails. One of the best distinctions between the two kittiwake species is not visible in this photograph: the darker underwing of Red-legged.

Most of the substantial number of vagrant Cuculus cuckoo records in western Alaska during late spring and early summer involve Common Cuckoos, with just a few records of Oriental Cuckoo. In contrast, the now approximately 10 Cuculus cuckoo records from late June through September are of Oriental Cuckoos (ca. 7) or unidentified to species (ca. 3). Telling silent gray-morph cuckoos apart in the field is a difficult task. (Most—although not all—birds are silent in Alaska.) Hepatic-morph birds are easier to tell because of differences in their rump patterns. Gray-morph Oriental Cuckoo may be told from Common, however, by averaging more buffy on the undertail coverts and by having a more-contrasting underwing pattern with solid, dark slaty-gray patches that contrast with otherwise mostly unmarked underwing linings. Other, more subtle characters that might be helpful in telling the two species apart include bill shape (slightly shorter in Oriental) and darkness of the upperparts (slightly darker in Oriental). The width of the barring below is often not a safe distinction between the two species. The gray-morph Oriental Cuckoo shown here, one of two recent autumn records at Gambell, shows the buffy undertail coverts and contrasting underwing pattern. Gambell, Alaska; 23 August 1999. © Tony Leukering.
Another dream bird for West Coast vagrant searchers is **Pechora Pipit**. Like Middendorff’s Grasshopper-Warbler, this Asian stray has occurred to date only in western Alaska—but who knows what the future holds! To date there are approximately 15 spring records, almost all from the western Aleutians. In 2003, 2004, and 2005, a total of three, four, and one individuals, respectively, were discovered at Gambell in fall, the first records for this season in Alaska. Whether the species was overlooked before these recent years is uncertain. In these two photographs, differences between this species and the much more regularly occurring Red-throated Pipit include the following: more boldly and sharply streaked crown and back; warmer brown auriculants and remainder of head; bolder white wing-bars; dark loral line; fleshier (versus yellowish) and slightly thicker-based bill; white throat and belly contrasting with a pure, pale buff wash to the breast and flanks; and, importantly, two or three visible primary tips beyond the longest tertial. Call note differences are also important: Red-throated regularly gives a thin, high spee when flushed (and generally when in flight), whereas the even more furtive Pechora usually remains silent, or gives a very different, sharp, short, one- or two-syllable call. Gambell, Alaska; 6 September 2004. © Brian L. Sullivan.
Snow Buntings are common breeders in the Bering Sea region, and smaller numbers winter there locally as well. Juvenal plumage is lost by the time individuals arrive in southern Canada and the Lower 48 in late autumn and early winter. This juvenile shows the characteristic sooty-gray wash and orangey bill. Juvenile McKay’s Buntings average paler gray; see Rogers (2005) for details on separating Snow and McKay’s Buntings. Gambell, Alaska; 25 August 1994. © Matt Heindel.

Telling apart many adult Common and Hoary Redpolls is difficult enough. Juvenile redpolls are even more difficult, and some birds may defy identification. Birds of this age lack the red “poll”, are heavily streaked, and are typically darker overall than adults. Both species are found in the Bering Sea region, including the mainland coast where large single- and mixed-species flocks can be seen in late summer and early autumn at places such as Nome. I have observed flocks of redpolls at Nome in late August in which I swore a number of larger-billed juveniles must have been Commons, only to then watch as adult Hoaries fed them! At Gambell, only Hoary is known to breed, but both species occur regularly in migration. This individual’s bill size and shape look close to those typical of Hoary. Gambell, Alaska; 30 August 2004. © Brian L. Sullivan.